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1 PDF Estimation using Gaussian Mixtures

This section is concerned with the general PDF estimation problem. Let p(z) be the PDF of z which
must be estimated from training samples. If p(z) is continuous, it may be approximated to arbitrary
accuracy by any kernel-based estimator [1], such as the method of Gaussian Mixtures (GM) [2] given
enough terms.

1.1 Gaussian Mixtures and the E-M Algorithm
The GM form of the PDF for z € RY is given by

L

p(z) =D o N(z, pyi, i) (1)

i=1
where

Ao iy 20) = (20) 772 |2 exp {5 (2 - )’ B (2w}

The GM parameters are denoted A = {a;, p;, X;}. The most commonly used method for finding the
maximum likelihood estimate of the parameters from a training set is the E-M algorithm [2]. Given a
starting-point for A, the update equations are provided in Table 1. The algorithm has been generalized
to allow the inclusion of data weights -y, such that the quantity

Q= logN(zk, p;, )
k

is maximized. These weights will be useful in joint model estimation and may be assumed constant
(vx = 1) if not used. The algorithm in Table 1, while correct, is representative only. Actual computa-
tion requires careful attention to numerical issues which are discussed below.

1.2 Implementation Overview

In the sections that follow, we discuss the subtleties associated with practical implementations of the
E-M algorithm. We also discribe a complete MATLAB library for training, evaluating, and visualizing



Repeat until convergence:

1. Compute data weights. Fori=1,...,L:
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3. Update the means. Fori=1,...,L:
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4. Update the covariances. For ¢ =1,..., L:
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5. Condition the covariances. There are two methods for doing this, the BIAS and CONSTRAINT methods.
The following is the BIAS method: Fori=1,...,L:

{El}n,n = {Ei}n,n + pi, n=1,.. .,P,

where p,, is the assumed measurement standard deviation for the n-th element of feature z. The addition
of this a priori information about the feature serves to prevent the covariance matrices from becoming
singular. These constants p2 must be chosen carefully. The topic will be discussed in detail in section
1.3.4. The CONSTRAINT method is described therein.
6. Update mode weights. For i =1,...,L:
!
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Table 1: Update Equations for Gaussian Mixtures. This is representative only. Actual implementation
requires attention to numerical issues discussed in the text.



Table 2: GPARM structure definition

PDF’s of high dimensions. The Gaussian mixture parameters are organized into a structure. The
GPARM structure for feature dimension DIM with NMODES modes has the form shown in Table 2.
To illustrate the use of the structure in MATLABS, if ’gparm’ is the name of the Gaussian mixture
parameters, then the mixing weight of the third mode is accessed as gparm.modes(3).weight. A
vector containing all the weights us created as follows: wts = [gparm.modes.weight]’, whereupon
wts is a NMODE-by-1 vector of mixing weights. The meaning of each parameter in the structure will
be described. The correspondence between the mathematical symbols and the MATLAB variables are
tabulated in Table 3. Some of these symbols are already defined. The rest will be defined later. The E-
M algorithm of Table 1 is implemented by subroutine gmix_step.m, however training is more involved
than just calling gmix_step.m repeatedly. The subtleties are described in the following sections. In
the software, the subroutine train.m handles the details.

To illustrate the PDF estimation problem, we will use some 3-dimensional features from a
mysterious source. Samples of the feature vector z = {21, 29, 23} were used as training data and were
stored in variable datal. Each column of the matrix stores the samples of a different feature. The
following code segment implements the training and displays the resulting PDF in a density plot.

NMODE=10;
min_std = [20 20 1.0];
names = {’Z1°,°7Z27,°Z3°};

gparml = init_gmix(datal,NMODE,names,min_std) ;
for i=1:100,
[gparml,Q] = gmix_step(gparml,datal);
fprintf(’%d: Total log-likelihood=%g\n’,i,Q);
end;
gmix_view2(gparml,datal,1,2);



Parameter Name

Mathematical Symbol or Description
ie[l...L], nel...P]

GM Parameters

DIM=length(gparm.features)
NMODES=length(gparm.modes)
gparm.modes(i).weight
gparm.modes(i).mean
gparm.modes(i).cholesky_covar
gparm.features(n).min_std
gparm.features(n).name

P
Number of GM components, L
o
12
R;
Pn
Feature Name

Other Variables
N Number of input samples, N
data Training data, z
data_wts Data weights

Table 3: Table of correspondence between MATLAB variables and mathematical symbols used in the
text.

Refer to table 3 for symbol names. The variable names is a cell array that stores the feature names
for use in visualization plots. The variable min_std stores the minimum feature standard deviations.
The routine init_gmix.m creates an initial set of parameters. In simple problems, the mixture can
be trained by repeated calls to gmix_step.m as shown. In more difficult problems, it is necessary to
do more to insure that there are the right number of modes and that the algorithm is converging
properly. A representative MATLAB program for training is gmix_trainscript.m, which in turn
calls gmix_step.m, the subroutine that actually implements the E-M algorithm. We will discuss the
use of gmix_trainscript.m in more detail in the following sections. Results of running the above
code segment are shown in Figure 1. Visualization is accomplished by gmix_view2.m for any desired
2-dimensional plane. A routine gmix viewl.m is also available for projecting on one axis using a
histogram. We will describe a complete example in more detail in section 1.5.

Before iterating, a starting point is needed for the GM parameters. This is handled by init_gmix.m.
This routine inputs some samples of data vectors z1,...,zy, the number of GM terms to use (L), the
covariance conditioning parameters p,, and the names of all the features. The GM component means
W; are initialized to randomly selected input data samples. The covariances are initialized to diagonal
matrices with large variances. It is important to use variances on the order of the square of the data
volume width |max(z) — min(z)|?. The size of the variances at initialization determines the data
“window” through which each GM component “sees” the data. Too small a window at initialization
can lock the algorithm into the wrong local minimum of the likelihood function. The initial weights
«; are set to be all equal.

There are two approaches to determining the number of modes. The first is to sprinkle a large
number of modes throughout the data volume and remove the weak or redundant ones as it converges.
The second approach is to start with just one mode and add modes as needed. The way you determine
if a new mode is needed (by splitting an existing mode) is by a skew or kurtosis measure (kurt.m).
These two methods, called top-down and bottom-up, respectively will be covered in section 1.4.
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Figure 1: Results of PDF estimation for the 3-dimensional feature vector z = {z1, 22, 23}. Data and
PDF’s are projected on the (z1,22) plane. The three cases are for 12, 100, and 500 training samples.
The final number of mixture components (L) was 1, 6, and 8, respectively.

1.3 Implementation of the E-M algorithm : gmix_step.m
1.3.1 Working in the log-domain.

Since probabilities can become extremely small, it is necessary to remain in the log-domain. Staying
in the log-domain is a problem when summations are required. Let I; = log N (zg, p;, X;). The
summation

L
log S = log [Z a; exp(li)]

i=1
which appears in the first step of the E-M algorithm should be implemented as logS = M +

L
Z ajexp(l; — M), where M = max; [;.
i=1

1.3.2 TUsing the Cholesky Decomposition of ;.

Instead of computing ¥; directly, we store the Cholesky decomposition of X; computed using the QR
decomposition. Consider a matrix of column vectors X = [x1,X2,...,xy]. These columns correspond
to the vectors (z;—p;) in Table 1. A covariance estimate is obtained by forming the matrix ¥ = XX/,
which may be verified is the same as computing the elements of X as follows:

1N
Tij =N > ki Ty
k=1
But note that if you take the QR decomposition X’ = QR, that
Y= iXX’ = iR’Q'QR = iR’R
N N N )

Thus, we see that the QR decomposition of X' is related to the Cholesky factor of X. There is no
reason to ever compute ¥ explicitly. Computing 3 requires twice the number of bits of precision as
R. A quadratic form can be computed using R as follows:

237z = |ly||”



where
y =z'R~%L

This convention is used in the software (gmix_step.m). More precisely, the matrix tmpidx stores
X’ where the rows of X’ are (zp — ;). The QR decomposition of tmpidx is R, which is stored
as a parameter. The subroutine for computing log N (zk, p;, £;) is lqr_eval.m. This routine inputs
Zi,...,ZN, i;, and R;. The mixture (1) is implemented by subroutine lqr_evp.m.

1.3.3 Choosing the covariance constraints

If the quantization or additive measurement error variance is known for each feature, this can be
used as a guide for choosing the covariance constraints. But, it can somewhat subjective if nothing
is known about the data. A good idea of what to use for p, may be obtained by observing the data
on 2-dimensional projections. You should select p,, consistent with the width of the smallest visible
cluster of data. For example, by looking at the top of Figure 3, p; and ps would be estimated by
taking cross-sections of the visible data clusters along the X and Y axes, respectively. In the bottom
of Figure, we see the result of choosing p,, too large (note the width of the small Gaussian mode is
larger than the width of the corresponsing data cluster). It may be necessary to view the data in all
possible 2-D projections before a decision can be made.

1.3.4 Conditioning the Covariances

Conditioning the covariances is accomplished without explicitly computing 3; as well. As mentioned
in Table 1, step 5, there are two methods, the BIAS and CONSTRAINT methods. The BIAS method
is simpler. On the other hand, the CONSTRAINT method delivers a better PDF estimate because the
covariances are not biased and appears to converge faster. But, it may interfere with the monotonic
increasing property of the E-M algorithm, i.e. that the total log-likelihood always goes up, but this is
still an unresolved issue. Both methods are based on the idea of independent measurement error in the
elements of z. Let A be a diagonal covariance matrix with A,, , = p%. The two methods differ in how
they regard A. The BIAS method assumes A is an a priori estimate of 3, while the CONSTRAINT
method assumes A is a measurement error covariance.

The BIAS method is implemented by adding A to the newly formed covariance estimate. But,
because we do not work with 3 directly, it is necessary to implement the conditioning as follows: Let
X’ = QR. The upper triangular matrix R is retained and Q is discarded. Next, we form the matrix
as shown below for the case P = 3:

11 Ti2 T13
0 792 o3
R 0 0 T33
R* = —
diag(pn) pr O 0
0 P2 0
L0 0 p ]

It may be verified that R*¥R* is the same as X; with the diagonal adjustments. Next, the QR-
decomposition of R* is computed and the upper triangular part is stored.

The CONSTRAINT method assumes that ¥ = 3y + A where X is an arbitrary covariance. Let
the eigendecomposition of 3 be T = VS?V'. Clearly, then

SZ=V'E,V +V/AV.



Thus, the diagonal elements of S can be no smaller than the square root of the diagonal elements of
V'AV. Note that V and S may be obtained from the SVD of the Cholesky factor of X:

> = R'R,

and
USV' =R.

It is implemented in this way in gmix step.m (tmpvar corresponds to R):

[U,S,V]=svd(tmpvar,0);

S = diag(S);

S = max(S,sqrt(diag( V’ * diag(minvar) * V )));
tmpvar = U * diag(S) * V’;

[q,tmpvar] = qr(tmpvar,0);

where the last two steps re-construct R, then force it to be upper triangular.
Consider the following example. Data was created using a mixture of 2 Gaussians using the code
segment below:

h

% produce data that is from two Gaussian populations
yA

fprintf (’Creating data : ’);
N=4096;

meanli=[2 3]°’;

covi= [2 -1.6; -1.6 2];
mean2=[1.3 1.3]’;

cov2= [.005 0; O .005];

x1 = chol(covl)’ * randn(DIM,N);
x1=x1+repmat (meani,1,N);

x2 = chol(cov2)’ * randn(DIM,N);
x2=x2+repmat (mean2,1,N);

datal = [x1 x2];

Next, a GM parameter set was initialized with 2 modes with random starting means. Next,
gmix_step.m was iterated 50 times using the BIAS and the CONSTRAINT method. This experi-
ment was repeated 9 times. In each trial, the same starting point was used for both methods. The
results are plotted in Figures 2 and 3. Note that the BIAS method has covariances that are biased
and appear somewhat larger than necessary. In every case, the CONSTRAINT method converged
faster and achieved a higher log-likelihood.

1.4 Training

Before training can occur, the GM paremeters must be initialized with a call to init_gmix, which was
described in section 1.2, where we discussed two approaches to training. The top-down approach and
bottom-up approaches are implemented simply by defining either a large number of modes or else just
one mode, respectively. The number of modes is specified by in the arguments of init_gmix.m. But,
training is more involved than just repeatedly calling gmix_step.m. Training involves five operations
that are handled by gmix_trainscript.m:
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Figure 2: Convergence performance of the BIAS and CONSTRAINT methods. The CONSTRAINT
method is consistently faster and achieves a higher log-likelihood every time.
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Figure 3: Typical results of training using the BIAS (left) and CONSTRAINT (right) methods. Each
method used p, = 0.5. Note that for the BIAS method, the covariance of the large mode is too fat,
but for the CONSTRAINT method it is correct. For the small mode, the mode size is much smaller
than p,, and therefore both methods produce similar results, as would be expected.



1. E-M algorithm (gmix_step.m), sections 1.1,1.3.

2. Pruning modes (gmix_deflate.m), section 1.4.3.

3. Merging modes (gmix_merge.m), section 1.4.4.

4. Splitting modes (gmix_kurt.m), section 1.4.5.

5. Determining if algorithm has converged, section 1.4.6.

The operations are discussed in the indicated sections. An overall training script
(gmix_trainscript.m) is discussed in section 1.4.7. The user has some control over some parameters
used in training. In addition to the initial number of mixture modes, there are five other parameters
that affect the training over which the user has some control.

1. The covariance constraints p, (and selection of BIAS or CONSTRAINT method).
2. The minimum mode weight used in pruning modes.

3. The threshold used to determine if two modes should be merged.

4. The threshold to determine if a mode should be split.

5. The criterion for determining if convergence has occurred.

These parameters correspond directly to the five steps outlined above and are discussed in the indicated
sections.

1.4.1 Determining the number of modes.

As we have stated, training can start with a large number of modes or just one mode. If the number of
modes is too high, modes will be pruned out as «; falls. If the number of modes is too low, modes will
be split by gmix kurt.m. Once the number of modes settles out and the likelihood stops increasing,
convergence is declared.

The maximum number of modes to start with is about N/(4P) where P is the dimension and N is
the number of samples. If all the modes “share” the data equally, that is 4P samples per mode, a bare
minimum. It is generally not problematic if the number of modes is over-specified since covariance
estimates are stabilized by the conditioning discussed in section 1.3.4. And, as long as the amount of
training data can support the number of modes chosen, the approximation is good. The mixing weight
of a mode (a;) multiplied by the number of input data samples N determines how many input data
samples are effectively used to estimate the mode parameters. This is a simple measure of the “value”
of each mode. As long as this product is high enough, the mode is estimated accurately. If ; falls too
low, the mode is eliminated or combined with another. With a combination of covariance constraints,
pruning, merging, and mode splitting, a good PDF approximation can be obtained reliably.

1.4.2 E-M algorithm (gmix_step.m)
The E-M algorithm is explained in section 1.3. The calling syntax for gmix_step.m is as follows:

[gparm,Q] = gmix_step(gparm,x, [bias],[data_wts]);

where gparm are the input parameters, x is the normalized input data, bias (optional) is set to
1 for BIAS method and 0 for CONSTRAINT method, and data wts (optional) allows individually
weighting input data. On return, Q is the total log-likelihood.



1.4.3 Pruning (gmix deflate.m)

Pruning is killing weak modes (a mode is another name for one of the L mixture components). A
weak mode is found by testing «; to see if it falls below a threshold. We have mentioned that N¢; is
a measure of how many samples are “used” by mode ¢. To keep this quantity above kP, we require
a; > kP/N. The quantity kP is called SAMPLES_PER_MODE, or S P_M in the software. A good
choice for k is about 4.

Pruning is handled by gmix _deflate.m. This program keeps bumping off the weakest mode and
re-normalizing «; so that ), o; = 1. The calling syntax for gmix_deflate.mis

gparm = gmix_deflate(gparm,min_weight_1,min_weight_all)

It is important that very weak modes be obliterated immediately, but it is important not to massacre
lots of moderately weak modes all at once. So, there are two input thresholds. Only one mode per call
to gmix_deflate.m can be bumped off if it falls below min weight_1. But a mode is always bumped
off if it falls below min weight_all.

1.4.4 Merging Modes (gmix merge.m)

Merging is creating a single mode from two nearly identical ones. The closeness of two modes is
determined by mode_dist.m which works as follows. Let there be two PDF’s p;(z) and p2(z). Let
there be a collection of points denoted z; € X; near the central peak of p;(z) and a collection of points
denoted z; € X5 near the central peak of ps(x). Then we define the closeness metric

II po(x) II pa(=i)

d _ r;€EXq r;€EXo
II pil=) I pol=i)
z;€X1 T;€X2

Notice that this metric is unity when p;(z) = pa(z) and less that unity when p;(z) # pa(z). Since I
use the log of d, the answer is always negative. A threshold (usually about -1) is used to determine
if the modes are too close. This threshold should increase (become more negative) as the dimension
goes up.

Since p1(z) and po(z) are just two Gaussian modes, it is easy to know where some good points for
X; and Xy are. We choose the means (centers) and then go one standard deviation in each direction
along all the principal axes. The principal axes are found by SVD decomposition of R (the Cholesky
factor of the covariance matrix). This is illustrated in Figure 4 for a Gaussian mode of dimension
P = 2. There is a center point and two points per dimension. Therefore there are 2P + 1 points per
mode, and two modes, thus 4P + 2 points.

If two modes are found to be too close, they are merged. Merging is forming a weighted sum of
two modes (weighted by a1, @3). The new mean is thus

Qi1py + Qo po
= bl 2)
1+ o

The proper way to form a weighted combination of the covariances is not simply a weighed sum of
the covariances, which does not take into account the separation of the means. You need to be more
clever. Consider the Cholesky decomposition ¥ = R'R. It is possible to consider the rows of VPR
to be samples of P-dimensional vectors whose covariance is X, where P is the dimension. The sample
covariance is, of course %(\/1_3)2 R'R = X, Now, given two modes to merge, we regard v/ P Ry and

VP R as two populations to be joined. The sample covariance of the collection of rows is the desired
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Figure 4: The 5 summation points for a 2-dimensional mode. Contour at 2.

covariance. But this assigns equal weight to the two populations. To weight them by their respective

weights, we multiply them by

a1 (85
n
aitasz and a1 taz

. Before they can be joined, however, they must

be shifted so they are re-referenced to the new central mean. Here is a summary of the method:

1.

2.

Let p be as in (2).

Let R; be the Cholesky factor of X;, 1 =1, 2.

. Let C; = VP R, each i.

Add the vector pu; — p to each row of C;, each .

. Multiply C; by ,/—%—, each i.

aitaz’?

. Form

Cy
c=| ...
C,

. Then the new covariance is 3 = % C'C, or take the QR-decomposition of C/ V/P as the Cholesky

factor of the new covariance.

The above algorithm is implemented by merge.m. The subroutine that iterates over all the pairs of
modes and calls merge.m and mode_dist.m is gmix_merge.m. The calling syntax for gmix merge.m is

gparm = gmix_merge(gparm,max_closeness)

A good choice for the max closeness threshold is about -1.0 times the PDF dimension.

1.4.5 Splitting modes (gmix kurt.m)

In a method proposed by N. Vlassis and A. Likas [3], the number of modes in a Gaussian mixture
is determined by monitoring the weighted kurtosis for each mode. Putting their equation for one-
dimensional z in our notation, Vlassis et al define

4
_men ()

K; =
N .
n=1 w’n,l

11



where
N(zna M, 22)
Wn i

e nNzl N(zna“‘ia Ei)

If |k;| is too high for any mode 4, they split the mode into two. We modify this for higher dimension
and use the skew in addition to the kurtosis. Extending to higher dimension is done by projecting
each data sample z, onto the j-th principal axis of ¥; in turn. Let zfm- = (zn, — p;)'vi; where v;; is
the j-th column of V, obtained from the SVD of X; (see discussion in section 1.4.4). Thus, for each j,

1. Let
N 2 \*
Zn:l wTL,i (SL;')
Kij = -3
’ ETLN::[ wn,z
2. Let
N 20\
n,i
Yon=1Wn <s_¢)
Yij = N
’ E'n,:]_ wn,i
3. Let
mi; = [Ki| + il
where

N
N ]
9 2 on—1Wn,i (zn,z)
85 = ~ :
En:l wn,z

(3
Now, if m; ; > 7, for any j, split mode . Split the mode by creating modes at

B=p+viiSi

and
B=p; = vi;Sij

where §; ; is the j-th singular value of 3;. The same covariance ¥; is used for each new mode. Of
course, the decision of whether to split or not depends on the mixing proportion «; as well. No splitting
occurs if ¢; is too small.

In the following example, we create data with a gap in it. We begin iterating with a single mode.
The kurtosis/skew algorithm above is able to assign modes until it is finally happy after 8 modes
(Figure 5). The calling syntax for gmix kurt.m is

gparm = gmix_kurt(gparm,x, [kurt_thresh], [debug]);

The optional threshold parameter (default=1.0) allows control over splitting. A higher threshold is less
likely to split. The optional debug parameter, if set to 1, will print out kurtosis and skew information.

1.4.6 Convergence

A good way to monitor the algorithm to detect convergence is to maintain a history list of the last
few values of ). If there is no improvement in @) for the duration of the history list, terminate the
training.

12
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Figure 5: Results of bottom up PDF estimation. One mode (left), two modes (center), and after
convergence at 8 modes (right).

1.4.7 Training script (gmix_trainscript.m)

The script gmix_trainscript.m may be used with the simple syntax:
gparm=gmix_trainscript (gparm,data,MAXIT);

where gparm is the GM parameter vector, data is the N-by-P input data vector, and MAXIT is the
maximum number of iterations allowed. For added control, additional parameters may be added using
the syntax

gparm=gmix_trainscript (gparm,data,MAXIT,SAMPLES_PER_MODE, BIAS,
max_close, addmodes, kurt_thresh)

The meaning of these parameters are discussed in previous sections.

1.4.8 Training on Huge data sets

If the number of data samples (N) is very large, the training scripts can choke like a chihuahua
trying to eat a watermellon in one gulp. To handle this problem, there are scripts that can chop
the watermellon into bite-size chunks and have the same effect (albeit different numerically) as the
whole watermellon. The relevant scripts are gmix_accum.m and gmix norm.m. The following code
demonstrates how to use these two routines in place of gmix_step.m.

% Synopsis: bite-size replacement for

% [gparm,Q] = gmix_step(gparm,xn);

% The following code is equivalent to one call to

% gmix_step. The numerical behavior is different

% since gmix_step uses the newly computed means

% for covariance update, while gmix_accum uses

% the means from the last iteration. This is the

% only way that it can be done since the new means are

13



% mnot available until gmix_norm is called.

gparm = init_gmix( ..... );
for iteration=1:10,

% initialize accumulators to zero

% at start of each iteration

newmean=[] ;

newvar=[];

atot=zeros (nmode,1);

for i=1:nmode,
newmean{i}=zeros(dim,1);
newvar{i}=zeros(dim,dim) ;

end;

qtot=0;

% Loop over 1000 bite-size pieces
for i=1 : 1000,
X = ... % get new data matrix
[newmean,newvar,atot,qtot] = ...
gmix_accum(gparm,x,newmean,newvar,atot,qgtot) ;
end;

% finalize the iteration
arm = ix_norm(gparm,newmean,newvar,atot) ;
gp gnm gp
end;

1.5 An Example

Script gmix_example.mis designed as a teaching example for use of the software. All the basic functions
as well as some handy utilities are demonstrated. Refer to the program listing for the discussion that
follows. After typing >> gmix_example at the MATLAB prompt, you will see the graph of Figure 6
and the program will pause. This is a two-dimensional “point scatter” diagram of the data that we
will fit a Gaussian Mixture to. Refer to the program listing to see how this data is created. Pressing
any key initializes the Gaussian Mixture parameters with the following 3 lines:

names={’ENGY’,’TIME’};

min_std = [.1 .1];

NMODE=1;

gparml=init_gmix(datal ,NMODE,names,min_std);

The first line assigns names to the two dimensions. We have chosen to call them "ENGY” and ” TIME”.
The next line assigns the p,, parameters, as discussed in section 1.3.4. The N training data samples are
stored in the P x N variable datal. The last line creates the parameter structure gparml. Since the
algorithm starts with just a single mode (NMODE=1), the approximation is poor (Figure 7). Pressing a
key again executes the training with a 150-iteration limit:

14
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Figure 7: The initial Gaussian mixture approximation.
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Figure 8: Gaussian mixture approximation after convergence.

gparml=gmix_trainscript(gparml,datal,150);

The log likelihood (Q) is printed out at each iteration along with the number of modes. Log likelihood
would monotonically increase, if not for the pruning, splitting, and merging operations. Use of the
CONSTRAINT method of covariance conditioning will also affect the monotonicity. It may be verified,
however, that calls to gmix_step.m with BIAS=1 will result in monotonic likelihood increase, with
the possible exception of numerical errors at the very end of the convergence process. Whenever mode
splitting occurs, the message “Adding a mode ..” is printed. Whenever mode merging occurs, the
message “Merging ...” is printed. Because in this example, we have initialized with just one mode,
mode splitting is more likely that merging, although is is possible that after several modes have been
split, they can be re-merged. This causes a “fight” between gmix kurt.m which tries to split, and
gmix_merge.m, which tries to merge. In gmix_trainscript.m, it is arranged to allow time between
splitting and merging so that the E-M algorithm can settle out. Otherwise, newly merged modes could
be quickly split, or newly split modes could be quickly merged.

Once gmix_trainscript.m converges, you should should see the graph on the left of Figure 8.
These plots are produced by gmix view2.m. This utility is perhaps the most useful visualization
tool for high-dimensional PDF estimation. It allows the data scatter plot to be compared with the
marginalized PDF on any 2-dimensional plane.

Marginalization is a simple matter for Gaussian mixtures. Let z = [21, 29, 23, 24]. To visualize on
the (29, z4) plane, for example, we would need to compute

p(ZQ,Z4) :/ / p(21,22,23,24)d21d2’3.
z1 J 23

Instead of integrating out z1, z3, marginalization requires only stripping out the first and third elements
of each mode mean vector, and the first and third rows and columns of each mode covariance, then
computing the resulting Gaussian mixture! Because we work with the Cholesky decomposition of the
mode covariances, it requires stripping out the necessary columns, then doing a QR decomposition of
the result. This stripping operation is performed by gmix_strip.m. The syntax would be:
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gparm_out = gmix_strip(gparm_in, [2 4]);

where the second argument indicates that we want to retain the second and fourth dimensions. Using
this method, the marginal distribution of any 2-dimensional plane is easily computed. Stripping is
handled automatically by gmix_view2.m.

Press once more and the intensity plot is replaced by a contour plot of the modes (on the right
of Figure 8. The contour plot is obtained by the fourth argument to gmix view2.m. The complete
syntax of gmix_view2.m is

[p,xp,ypl=gmix_view2(gparml,datal,idx1,idx2, [do_ellip], [M],iplot);

where idx1, idx2 are the indexes of the dimensions requested and do_ellip is an optional argument
that, if equal to 1 (default=0), produces a contour plot of each mode instead of an image. M is
an optional parameter that defines the number of resolution cells for each dimension of the plot
(default=60). The optional parameter iplot can be set to zero if only the outputs p,xp,yp are
wanted. These outputs provide the output PDF grid that can be plotted by imagesc(xp,yp,p).- In
the example, since the data is 2-dimensional to begin with, there is no dimension reduction performed
by gmix_view2.m. Even though normalized data is input, all plots produced by gmix_viewl.m and
gmix_view2.m are produced in the raw un-normalized data domain so they may be compared with the
raw data.

Information about the Gaussian mixture may be printed by calling gmix_show.m. This information,
which includes the mode weights, means, and determinants, can be directly compared with Figure
8. The true means are (2,3) and (.5,.5), and the true determinants are 1.44 and 1.0, respectively.
Generally, if the algorithm results in just 2 modes, the parameters agree very closely. The inclusion
of a third or fourth mode makes it difficult to see the correspondence. But, nevertheless, the PDF
approximation is good as evidenced by the intensity plot. You can run gmix_example.m again and each
time the result will be a little different. But always, the intensity plot and the PDF approximation is
excellent.

Press the key once more and Figure 9 will be plotted. This figure shows the 1-dimensional marginals
for each dimension displayed along with the histograms. It is the result of calling gmix viewl.m. The
calling syntax is

[pdf,xp,h,xh]=gmix_viewl(gparm,data,idx,nbins);

If called without any output arguments, the plot will automatically be generated. Input “idx” is an
array of indexes for the dimensiona desired. For more than one index, multiple plots are produced.
Input “nbins” is the histogram size.

Press a key once more and Figure 10 is shown. This figure plots the original data again in green
and some synthetic data created by gmix makedata.m in red. This demonstrates a convenient aspect
of GM approximation: generating synthetic data is simple.

Press a key once more and Figure 11 appears. We now have two data sets. We will now build
a classifier using Gaussian mixtures. The first step is to train a second parameter set on the second
data set. This time, we will use the top-down approach by initializing with 15 mixture modes. This
time, there will be alot of merging and purging going on, but less splitting! Press a key again and the
training starts. When complete, you should see Figure 12.

To classity, it is necessary to compute the log-likelihood of test data. This is done using 1qr_evp.m.
The name of the subroutine was not thought up logically, but evolved from (1)og-likelihood (ev)aluation
from the (p)arameters, and the fact that the (QR) decomposition is involved in the covariance esti-
mates! The calling syntax is
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Figure 12: Result of top-down approach: Trained GM approximation of second class.
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Figure 13: ROC curve for two-class problem.

loglik = 1lqr_evp(gparml,datal,0);

If the third argument was 1, the routine would return a matrix of log-likelihoods where each column is
from one of the mixture modes. The zero forces the modes to be combined with the apropriate weights
into the GM approximation. In addition, the log-likelihood is compensated for the normalization
scaling that was performed on the training data. The ROC curve is shown in Figure 13. Refer to the
listing for details.

2 Application of Gaussian Mixtures to Parameter Estimation

2.1 Estimation in general

Let the data vector z be composed of two parts x and y:

X
Y /=
;

We have available training samples of z, however in the future, only y will be available from which
we would like to compute estimates of x. We will shortly see that the GM density facilitates the
computation of the conditional mean or minimum mean square error (MMSE) estimator of x. The
conditional mean estimator is the expected value of x conditioned on y taking a specific (measured)
value, i.e.,

%= E(xly) = [ xplxly) dx

X
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The maximum aposteriori (MAP) estimator is given by
% = max p(x[y).

Both the MAP and MMSE estimators are operations performed on p(x|y). Which estimator is most
appropriate depends on the problem. Suffice it to say that the distribution p(x|y) expresses all the
knowledge we have about x after having measured y.

2.2 Estimation using Gaussian Mixtures

The GM representation of the density has the a remarkable property that p(x|y) can be computed
in closed form. This is especially useful in visualization of information. For example, it is useful to
show a human operator the distribution of likely x after y is measured. If desired, the MMSE can be
computed in closed form as well. The MAP estimate can also be computed, but that requires a search
over X.

Let the GM approximation to the distribution be given by

p(x,y) = Ziaipi(xay')' (3)

By Bayes rule,
px,y
p(xly) =
p(y)
where p(y) is the marginal distribution of y. We now define p;(y) as the marginal distributions of y
given that y is a member of mode i. These are, of course, Gaussian with means and covariances taken
from the y-partitions of the mode 7 mean and covariance p;, 3;.

“w,i 3. — zww,z’ zwy,z’
Ky i ' Yywi  Uyy,i

)
_p(y)zi iPi(X,y)

K =

Then,

1 . pi(x1Y)
pxly) = 2 cipi(y) pi(y)
) (4)
- —Ziaipi(Y)pz’(XW)

p(y)

where p;(x|y) is the conditional density for x given y assuming that x and y are from that certain
Gaussian sub-class i. Fortunately, there is a closed-form equation for p;(x|y) [4]. pi(x|y) is Gaussian
with mean

Ei(X|y) =ty + DayiZyy i (¥ — By)- (5)
and covariance

COVZ'(X‘Y) = Ezz,i - zzy,zzg;ylﬂzym,z (6)

Note that the conditional distribution is a Gaussian Mixture in its own right, with mode weights
modified by p;(y) which tends to “select” the modes closest to y. To reduce the number of modes in

the conditioning process, one could easily remove those modes with a low value of p;(y) (suggested by
R. L. Streit).
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This conditional distribution can be used for data visualization or, to easily calculate the condi-
tional mean estimate, which is a by-product of equations (4),(5),(6):

E(x[y)

[ plxly) x dx

1
= ey Len(y) [ pilely) x i )

1
— M ZZ a;P; (}’)Ez (X‘Y)

2.3 MATLAB implementation

The subroutine gmix_condx.m is used to generate the conditional distribution. The syntax is
gparm2 = gmix_condx(gparm,x_idx,y_idx,y)

where gparm is the GM parameter vector for p(z), x_idx are the indexes indicating which elements of
z constitute x (they can be any elements), and similarly for y_idx.

The subroutine gmix_cmean.m uses gmix_condx.m to compute the conditional mean of x. The
syntax is

xhat = gmix_cmean(gparm,x_idx,y_idx,y)

where all inputs are identical to gmix_condx.m. The one exception is that input y can include any
number of samples of y. The dimensions of y are N-by-P where N is the number of samples and P is
the dimension of y.

2.4 Example of Estimation: Beam Interpolation

Assume that beam intensity values are available from a set of M uniformly spaced (in direction) sonar
or radar beams. A target exists somewhere in the span of the M beams, yet we do not know its
center location, nor do we know the width of the response to the signal (as in a broadband system
with frequency-dependent beamwidth). We assume for simplicity that the amplitude is known, yet in
principle, amplitude can be another unknown. Thus, there are two parameters we seek to estimate:
direction d and beamwidth w. This problem normally requires a search in the d,w plane for best
match (as in maximum likelihood). Using GM, we solve the problem without a search, yet achieve
performance comparable to ML!

Let the beam pointing directions be di,...,dy. Let the beam intensities b = {b;...by} be

modeled by

b; = Aexp {—0.346(d - dﬁ%} + n;
where n; is a noise term (we use Gaussian noise in the simulation and CR bound analysis). This is a
Gaussian beampattern with 3 dB width w.

A sample size of 4096 was created using d and w selected from uniform distributions in the ranges
[-10,10], [15,50], respectively. Parameters were A = 50, 02 = 1, M = 5, {6;} = {—20, 10,0, 10,20}.
A GM model p(b,d,w) of 12 modes was trained on the data. To illustrate the ability to create
conditional distributions, p(d, w|b) was computed for a sample of b computed for d = 2, w = 18 with
no additive noise. The result appears in Figure 14. The visual effect of this figure is to say to the
operator that there are no other values of interest except the peak.
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Conditional of d,w given data generated with d=2,w=18

WDTH

Figure 14: Condition distibution of d (THTA) and w (WDTH) given a sample of b computed for
d = 2,w = 18 with no additive noise.
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Figure 15: The condition distibution p(b, w|d) marginalized on each dimension of b for d = 0.
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Distr. conditioned on d= -5
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Figure 16: The condition distibution p(b, w|d) marginalized on each dimension of b for d = —5.

It is also possible to condition on d or w. The conditional distribution p(b, w|d) was computed for
d =0 and d = —5. these plots are shown in Figures 15,16. Note that the beam output values have
distributions symmetric about the value of d, as expected. Note also the wider spread of values on
outer beams due to the variations in w.

Estimates of d, w were obtained using formulas (7),(5). To determine bias, uncorrupted (no noise)
values of b were created for a range of d for w fixed at 20, and for a range of w for d fixed at 2.
These two graphs appear in Figures 17,18. In each case, the bias error is plotted as a function of
the variable parameter. Bias is clearly a function of the operating point. It is also a function of the
number of modes and the convergence point of the GM approximation algorithm. Random error was
determined by choosing a specific value of d, w and running 300 trials with independent noise added
to b. The result of 300 trials is shown below.

Bias of d for fixed w (w=20). 12 modes

0.2
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direction d, degrees

Figure 17: Plot of d — d for noise-free data with w = 20.
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Bias of w for fixed d (d=2). 12 modes
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Figure 18: Plot of @ — w for noise-free data with d = 2.

True Value | Mean | Variance | CR Bound
d |2 1.9435 | .0550 .0493
w | 18 18.003 | .09756 .0945

Results of 300 trials, A =50, ¢?> =1, M = 5.

The results were in close agreement with the CR bound. Strictly speaking, the CR bound does not
apply since the conditional mean estimator is biased for a fixed d,w (it is unbiased for random d, w
conditioned on b), however, the CR bound is useful for comparison purposes.

2.5 CR Bound analysis
The log-PDF of the data b is

1 5 1 M 5 4117
Inp(b;d,w) = ~3 In(27o®) — @Ziﬂ [bi — Aexp {—O.346(d —d;) E}] )

where o2 is the variance of the additive independent Gaussian noise. The components of the Fisher
Information Matrix (FIM) for PDF parameters ¢;, ¢; are given by

. 321np(b;¢,.,¢j)>
Fouts = E( 09109,

Let the FIM be given by

raw= [ 2 2 |

A standard CR bound analysis [5] produces
2

A
Fuy = (0.346

o2

8

w?2

) X (- d)exp(-wi)?

A? 8 \2 M 9 2
Fuw =5 (0.346$) >, ((@—di)? exp(—wi))

A2 8 \? M 2
Fopo = Fpa= —s <0.346E> Zi:l ((d — di)2 exp(—wi))

wo?
where w; = 0.346(d — di)Z%. The CR bound matrix is given by C(d,w) = F~1(d, w).
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Figure 19: A hidden Markov model (HMM). As the state transitions occur from sample to sample, the
observer, cannot see the states directly. Instead, the observer makes observations whose PDF depends
on the state.

3 PDF Estimation using HMMs

The hidden Markov model (HMM) is a powerful statistical model that closely approximates many
phenomenon found in nature, such as human speech. While a very powerful statistical model, HMM'’s
need to be designed specifically for each signal type. A single HMM cannot easily act as a classifier
between a wide variety of signal classes. At least this was true until the introduction of the class-
specific method. In the following sections, we introduce HMM’s and show how they naturally fit into
the class-specific scheme. A versatile HMM software toolbox for MATLAB is also described.

3.1 Introduction to HMM’s

The fundamental assumption of an HMM is that the process to be modeled is governed by a finite num-
ber of states and that these states change once per time step in a random but statistically predictable
way. To be more precise, the state at any given time is depends only on the state at the previous
time step. This is known as the Markovian assumption. Figure 19 illustrates a hidden Markov model
(HMM). At each time step (time running to the right), the Markov model is in one of the five possible
states. According to the Markovian assumption, the probability that the model is in state j at time ¢
is governed only by the transition probability F;;, where 7 is the true state at time ¢ — 1. The Markov
model is “hidden” from view by the observer who can only observe measurements z; whose PDF is
governed by the true state at each time step. The mathematics of the HMM are reviewed in section
3.2.
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3.1.1 How HMM'’s are used.

The Baum-Welch algorithm is an algorithm for estimating the parameters of the HMM from training
data. The HMM is a complete statistical model for the series of measurements zi,zs,...,z7 and
therefore defines the probability density function p(zi,zs,...,z7). Therefore, once the parameters
have been determined, it is easy to use the HMM as a classifier. Furthermore, it is also easy to
generate "typical” measurement sequences. This aspect of the HMM has always fascinated me since
in principle, it would be possible to train an HMM on a specific human speaker, then create totally
random “jibberish” that sounded like the same speaker. I have always thought that here is potential
invention. For further information on HMM’s, the reader is referred to the tutorial by Rabiner [6].

3.1.2 The role of HMM’s in class-specific classifiers

In classifying signals, The hidden Markov model (HMM) has a major advantage but one serious
drawback. The advantages is that complex processes may be modeled using low-dimensional models,
thereby allowing the HMM to be trained using a realizable amount of data. The low dimension is
achieved by dividing (segmenting) the data into small time steps from which low-dimensional mea-
surements are made. Although the total observation space is large (the number of steps times the
dimension of the observations), the dimension of the observations may be kept low.

But the problem with HMM’s is that they need to be carefully tailored for a specific type of random
process. Not only is the segment size chosen specially, but so is the observation space (the feature set).
It is difficult for an HMM designed for speech recognition to operate well for other types of processes
except speech. If separate HMM’s are used, the likelihood values cannot be directly compared in a
classifier. The class-specific method solves this problem by allowing two or more HMM’s to be used
as detectors for their respective model class, while solving the problem of comparing the outputs
optimally.

3.2 The standard HMM

Following the notation of Rabiner [6], there are T' observation times. At each time 1 < ¢ < T, there
is a discrete state variable ¢; which takes one of N values ¢; € {S1,S2,--+,Sn}. According to the
Markovian assumption, the probability distribution of ¢;; depends only on the value of ¢;. This
is described compactly as a state transition probability matrix A whose elements a;; represent the
probability that ¢;+1 equals j given that ¢; equals 7. The initial state probabilities are denoted ;, the
probability that ¢; equals S;.

It is a hidden Markov model because the states ¢; are hidden from view; we cannot observe them.
But, we can observe the random data O; which is generated according to a PDF dependent on the
state at time ¢. We denote the PDF of O; under state j as b;(Oy).

The complete set of model parameters that define the HMM are

A = {mj,aij, bj}

The Baum-Welch algorithm calculates new estimates A given an observation sequence O = 0105 --- Or
and a previous estimate of A\. The algorithm is composed of two parts: the forward/backward proce-
dure, and the reestimation of parameters.
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3.2.1 Using Gaussian Mixtures for b;(0O).
It will be convenient to model the PDF’s b;(0;) as Gaussian mixtures:
M
bJ(O) = Z Cim N(O’ijanm)a 1<j<N

m=1

where )
N(O, s Uim) = (7)™ P[] ™12 exp { ~5(0 — 3 U320 — )}

and P is the dimension of O. We will refer to these Gaussian mixture parameters collectively as

A
bj = {ij’“jmanm}'

3.2.2 Forward/Backward Procedure

We wish to compute the probability of observation sequence O = 0105 - - - Or given the model A =
{mj,a;;,b;}. The forward procedure for p(O|X) is

1. Initialization:

Otl(i) = T bz(Ol), ISZSN (8)
2. Induction:
N
a1(j) = lzat(i)aij] bj(O41), 1<t<T-1
i—1 9)

3. Termination:

The backward procedure is

1. Initialization:

2. Induction:
Z“U (O41) Bey1(9), t=T-1,T-2,---,1

1<i<N

3.2.3 Reestimation of HMM Parameters

The reestimation procedure calculates new estimates of A given the observation sequence O =
0109 ---Or. We first define

Ott(') aij bj(Ot41) Bi+1(7)

Zzo‘t aij bj(Op11)Ber1(5)

i=1j=1

‘ft(zaj)

(13)
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and

N
Ye(i) =D &6, 4)- (14)
7j=1

The updated state priors are
7AT1' = 'yl(i). (15)

The updated state transition matrix is

T-1
Zét(ia .7)
t=1

> (i)
t=1
3.2.4 Reestimation of Observation PDF’s
In order to update the observation PDF'’s, it is necessary to maximize
T
Qj = Z wij log bj(Oy).
t=1
over the PDF b;, where
wy — a(7) Be(5) (17)

N
> () Bi(d)
i=1

This is a weighted maximum likelihood (ML) procedure since if w;; = ¢;, the results are the strict ML
estimates. The weights w;; are interpreted as the probability that the Markov chain is in state j at
time .

3.2.5 Reestimation of Gaussian Mixture Parameters

If b;(O) are modeled as Gaussian mixtures (GM), one could simply determine the weighted ML
estimates of the GM parameters. Since only iterative methods are known, this would require iterating
to convergence at each step. A more global approach is possible if the mixture component assignments
are regarded as “missing data” [7]. The result is that the quantity

T M
Qi =>_ ) %(j,m)logb;(Oy) (18)
t=1m=1
is maximized, where

. Cj N(Otau 7U' )
(i, m) = wyj | = fm (19)

> cik N (O, pjr, Ujk)
k=1

The weights 7;(j,m) are interpreted as the probability that the Markov chain is in state j and the
observation is from mixture component m at time ¢. The resulting update equations for cjm, pjp,, and
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U, are computed as follows:

T
> m
bjm = (20)
ZZ’Yt .77
t=1(=1
T
nyt(jam Ot
N =1
I — (21)

Z’Yt (]a m
t=1

T
Z ’Yt(jam) (Ot - I'l‘]m) (Ot - ”‘]m)l
Ujm == T (22)

Z’Yt(ja m
t=1

Note that the above equations do not treat the problem of constraining the GM covariances. This
needs to be addressed (see section 1).

3.2.6 Multiple Records

It is fairly straight-forward to extend the Baum-Welch algorithm to the case when multiple observation
sequences (“records”) are available. Rather than Oi,0s,...,Op, we have O7,05,..., Op, r=
1,2,..., R. For each record,

1. Run the forward-backward procedure on O, 03, ...,OF to produce o (i), B (4),
2. Compute &} (i,7), t =1,...,T, as in (13).
3. Compute v; (7) as in (14).

Then, we have

Updating the Gaussian mixture parameters requires defining

r — _050) B )

tj — N ’

> af (i) B (i)
=1

which leads to 7 (4, k) through (19). We then have

R T,

S viG,m
L r=lt— 1
Cm = R T,

> ZZ% )

r=1t=1l=1
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and

. et cetera.

3.3 MATLAB toolbox for HMM
We will demonstrate the HMM toolbox by example.

3.3.1 An HMM example

We now describe a simple problem that we will analyze using the HMM tools. Consider the HMM
with the following parameters:

81 1 1
A=|.1 8 1 m=120
d 1 8 0

The output of the HMM is a time series with a 16-sample step size (i.e. the state is allowed to change
every 16 output samples). The output is Gaussian with mean and variance depending on the state as
follows:

State Mean Var

1 0 1
2 0 4
3 2 1

For each 16-sample segment, the sample mean and standard deviation are computed. This constitutes
a 2-dimensional feature vector that is the observation space of the HMM.

3.3.2 Creating feature data for training.

To test the tools, we need to generate HMM output data from the above-defined model. Execute the
script file hmm example.m. The program calls the function Amm_maketestdata.m which generates the
2-dimensional feature data as described above. The call is

[x,istart ,nsamp] =hmm_maketestdata(Pi,A,nrecord,nsteps,N,NFEAT);

There are 10 records of length 400 segments, thus x is size 2-by-4000. The auxiliary outputs
istart,nsamp are vectors containing the starting samples and lengths of each of the ten records.
This makes it possible to locate individual records within the matrix. The script then plots the data
using the command

plot(x(1,:),x(2,:),’b.?);
xlabel (’MEAN’) ;
ylabel (’STDV’);

and waits for keyboard input. The resulting figure is shown in Figure 20.
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3.5

251

STDV

Figure 20: Scatter plot of the HMM output features. The three states can be seen individually.
Compare the plot with the table of means and standard deviations.

3.3.3 Initializing HMM parameters

Next, initialize a set of HMM parameters using the commands.

names={’MEAN’,’STDV’};

min_std=[.1 .1];

NSTATES=3;

NMODE=10;
parm=init_hmm(x,NSTATES,NMODE,names,min_std) ;

This first two commands define the feature names and the minimum standard deviations for Gaussian
mixture estimation (See Section 1). The initial HMM parameters are obtained by using init hmm.m
which creates a uniform state transition matrix A and prior probability 7. The PDF of the feature
vector in each state is approximated by Gaussian mixtures. The starting point for the Gaussian
mixture parameters are obtained by the function init_gmix.m described in the previous sections.

3.3.4 Training using the Baum-Welch algorithm
To run 10 iterations of the Baum-Welch algorithm, use the commands:

NIT=100;
[q, parm] = hmm2_reest(parm, x, istart, nsamp, NIT);

The algorithm prints the total log likelihood at each iteration. At the end, it prints the final state
transition matrix and initial probabilities. These should be close to the correct ones.
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Figure 21: PDF plots of the three state PDF’s after convergence. Aside from some minor outlier modes,
the PDF estimates correctly approximate the true PDF’s. It is easy to see which PDF corresponds to
which state of the simulated HMM.

3.3.5 Viewing the state PDF’s
To view the HMM PDEF’s, execute the command

hmm2_view(parm,x,1,2);

This produces the three state PDF plots as shown in Figure 21. The last two arguments are the
indexes of the two dimensions to be viewed. Since there are only two dimensions, the only choice is
1,2 (See a description of gmix view2.m in Section 1). Look at the figure and try to figure out which
PDF corresponds to state 1, 2, and 3. If a bad starting point was used, it may not have worked.

3.3.6 Annealing

No matter how many iterations one makes, the bad solution will never converge to the correct. But
there is a method that is usually successful in nudging a solution away from a bad stationary point.
This we call annealing and is done by expanding the covariance matrices of the PDF estimates and
by pushing the state transition matrix and prior state probabilities closer to “uniform”. The utility
ann hmm does this. Attempt to find a “bad” stationary point by re-running the above sequence until
one is found. Next, use the commands

parm=ann_hmm(parm,2,1.2);
[log_pdf_val, parm] = hmm2_reest(parm, x, istart, nsamp, NIT);
hmm?2_view(parm,x,1,2);

This should correct the problem. Try it to satisfy yourself that it works. The second argument is the

expansion factor for Cholesky factors of the covariance matrices and the third is a parameters greater

than 1.0 that determines how much the state transition matrix is annealed.

3.3.7 Creating Synthetic Observations

Creating sequences of observations corresponding to an HMM parameter set is simple. The command
[x2,states]=hmm2_synth_mex (parm,100) ;

x2=x27;
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creates a record of “nsamp” observations from the HMM defined by parameter set “parm”. The output
vector is of “nsamp” rows and number of columns corresponding to the feature dimension. It has to
be transposed to agree with the normal convention. The states are passed to the output as variable
“states”.

3.3.8 Estimating the states: the Viterbi algorithm.

The Viterbi algorithm [6] estimates the most likely state sequence. The command:
states=viterbi(parm,x);
Outputs the most likely state sequence corresponding to data x. As a test, try the following commands:

[x2,states]=hmm2_synth_mex (parm,100) ;
x2=x27;

est_states=viterbi(parm,x2);

Compare the estimated states with the actual.

3.3.9 Classifying using the trained HMM parameters

The log-likelihood output of the train hmm program can be used as a classifier. If the number of
iterations is specified as zero, a shortened version of the program is run, only running the forward
procedure.

[q, parm] = hmm2_reest(parm, x, istart, nsamp, 0);

Since the program finds the total log likelihood for each record passed to it, the total likelihood will
be the sum of the elements of “q”.

3.4 Class-Specific HMM

We review the Baum-Welch algorithm for the standard HMM in section 3.2. While the Baum-Welch
algorithm itself is well-defined, initialization of the HMM is more of an art. By studying a random
process, it is possible to discern distinct physical modes. The number of Markov states to use (N) is
at least as large as the number of modes. One could initialize the state PDF’s b;(O) randomly without
any prior assumption about which state corresponds to which physical mode or phenomenon. In this
case, it is difficult to predict which state will correspond to which mode after convergence. Or, one
could ascribe each Markov state to a particular mode. Then, the state PDF’s b;(O) may be initialized
by training them on labeled samples for the corresponding mode.

Since it common practice to ascribe certain subsets of training data to initialize individual Markov
states, it is not unreasonable to ascribe a feature set (sufficient statistic) as well. In the classic HMM,
likelihood values are the basis of comparison within the Baum-Welch algorithm. Now, since each state
uses it’s own feature space with possibly a different dimension, likelihood ratios are needed as a basis
of comparison. We will see that in the first step, division by a common likelihood function p(O;|Hp)
is nothing more that a special scaling and is equivalent to the classical approach. In the second step,
these likelihood ratios are written in terms of the sufficient statistics of the given state. As a result, the
HMM parameters may be estimated using fewer training samples. Or, given a fixed training sample,
the HMM parameters are more accurately determined.
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We assume that for each state j, there is a sufficient statistic Z;. Sufficiency is meant in the
following sense [8]: Let there be a common state with known PDF corresponding to j = 0 such that
b;(0) _ (%)
bo(0)  b5(Z;)’
where bj(Zj) are the PDF’s of Z; for state j. The superscript “2” is used to distinguish these PDF’s
from b;(0). In the above expression we are using the property that the likelihood ratio remains
the same if written in terms of a sufficient statistic. State 0 may be thought of as the noise-only
condition (the absence of signal). Or, in other cases, it may be thought of as the normal state. It may
appear overly restrictive to require that a common state Hy exists, but this is misleading. All that is
required is that the statistical models for each state include a noise-only condition. This is achieved
by including an amplitude parameter in the model. The hypothesis that State 0 occurs at all time
samples is denoted Hj.
The primary goal of the Baum-Welch for the standard HMM is the calculation of A by maximization
of p(O|A). The primary goal of the Baum-Welch for the class-specific HMM is the calculation of A
by maximization of p’gg‘lj‘g). Clearly this results in the same value of A. The complete set of model
parameters that define the class-specific HMM are

AI = {ﬂ-ja Qjj, bj}

=1,...,N, (23)

Note that knowledge of ' is equivalent to knowledge of A since from (23),

b:(Z;)
b;(0) = b(0) 327
! b§(Z;)
and by(0), b§(Z;) are presumed to be known PDF’s (either the PDFs are known exactly, or they may
be estimated from an unlimited amount of data).

(24)

3.4.1 Substitution of likelihood ratio for b,;(0O)

We now replace every occurrence of b;(0) with %ﬁ(%) and prove that the resulting algorithm arrives at
the same estimate of A. First recognize that if 0103 - - - O are independent and identically distributed
(7id) under Hy,

p(O|Ho) =TI{p(O¢|Ho) =TT, bo(Oy).
Now we replace b;(O;) with b;(O;)/bo(Oy) in (8) and (9). The resulting values of o (3), 8;(i) we denote
by «f(i), Bf (i) where “c” stands for “class-specific”. Note that

cra\ O‘t(i)
0fli) = o (25)

and .
pe(i) = P (26)

Hu:t+lbO(OU)
When the forward procedure terminates, we have
ey or(@) _ ar()
—1b0(0u)  P(OlHo)
Thus, the modified forward procedure computes p(O|A)/p(O|Hy).

It may be verified from (25), and (26) that the use of «f(i) and SBf(i) in place of oy (i) and £;(7)
has no effect in the Baum-Welch algorithm (i.e. equations 13, through 17), leaving the estimates #;,
a;; and weights w; ; unchanged. This is not surprising since division by p(O|Hj) is merely a special
scaling.
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3.4.2 Reestimation of PDF’s

Recall from section 3.4 that knowledge of b;(O) is equivalent to knowledge of b7(Z;). However, if we
are to obtain an advantage, we prefer to estimate b%(Z;). In the standard HMM (refer to section 3.2),
we obtain estimates of b;(O;) by weighted maximum likelihood (ML) by maximizing

T
Qj =Y wijlogb;(O). (27)
=1

over b; where wy; are interpreted as the probability of state j being true at time ¢. Estimates of b}
are obtained similarly by maximizing

T
Q; = Zwtj log bj(Zj,t). (28)
t=1

The densities which maximize (28) correspond to the densities which maximize (27) through equation
(24).

3.4.3 Gaussian Mixture for b7(Z;).
Let b7(Z;) be approximated by a Gaussian mixture:

M;
b;(Zj) = Z ij N(Zj’uj'm7U;m)a 1<j5<N,

m=1
where 1
N (Zj, s Un) = 20) 507 Ul "2 xp { =3 (2 = ) U5h(Z; — bigm) |

and P; is the dimension of Z;. We will refer to these Gaussian mixture parameters collectively as

z A ¢ 2 z z
b5 = {m Wim> Uin }

At each step of the Baum-Welch algorithm, the mixture which maximizes (28) is required. Since only
iterative methods are known for this optimization problem, this requires iterating to convergence.
Instead, by regarding the mixture component assignments as “missing data” in the E-M framework [7]
as is done in section 3.2.5 for the standard HMM, it is possible to incorporate the Gaussian Mixture
updates into the Baum-Welch algorithm.

The Gaussian mixture updates for b%(Z;) are analogous equations (19) through (22). Updates of
Cims Wi, and U7, are computed as follows:

Z 7t(j7 m)

= &
ZZ’)’t(ja l)
t=1l=1

T
Z’Yt(ja m) Zj,t
" t=1
Bim = ——

Z’Yt (.7’ m)

t=1

(30)
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where

where wy ; is from (17). It may be verified that Substltutlng af(i) and Bf(i) for au(i) and Bi(7) in
has no effect.

Z Yt ]a I“"]m) (Zj,t - I“"jm),

27?5(.7'3 m
t=1

: Sm N (Zjts Bjm, Uim)
Ve(d,m) = w5 J@ P e

Z J,t’ ”chaUzk)

3.4.4 Summary of Class-Specific Baum-Welch Algorithm

1. The class-specific forward procedure

(a) Initialization:

(b) Induction:

(c) Termination:

2. The class-specific backward procedure:

(a) Initialization:

(b) Induction:

. b (Z;1) ]
(@)= 2 1<i<N
1() % bfz)(Zi,l)
ozH_l lZat a”]—fg—:i; 1<t<T -1
1<j<N
0N <=,
=) w
o1y ~ 210
Br (i) =

t+1
Za” bz th+1 ,Bt+1() t:T_l,T_Q,“‘l

1<i<N

3. Reestimation of HMM parameters:

gt(za.]) N N

Z, ’
ZZat Qij sz Ltj;ﬁ&-l(j)

i=1j=1

followed by equations (14), through (16).
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(17)
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4. Update of PDF’s. Maximize equation (28) over b; where

o) B
t:] - N .
> (i) Bi(3)
=1

5. Update of Gaussian mixtures. If the PDF’s in step 4 are modeled as Gaussian mixtures, use

equations (29) through (32).

6. Repeat steps 1 through 5 until convergence.
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